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ABSTRACT

The existing Industrial Internet of Things (IIoT) temporal data analysis methods often suffer from 
issues such as information loss, difficulty balancing spatial and temporal features, and being affected 
by training data noise, which can lead to varying degrees of reduced model accuracy. Therefore, a 
new anomaly detection method was proposed, which integrated Transformer and adversarial training. 
Firstly, a bidirectional spatiotemporal feature extraction module was constructed by combining 
Graph Attention Networks (GAT) and Bidirectional Gated Recurrent Unit (BiGRU), which can 
simultaneously extract spatial and temporal features. Then, by combining multi-scale convolution 
with Long Short-Term Memory (LSTM), multi-scale contextual information was captured. Finally, 
an improved Transformer was used to fuse multi-dimensional features, combined with an adversarial-
trained variational autoencoder to calculate the anomalies of the input data. This method outperforms 
other comparison models by conducting experiments on four publicly available datasets.
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Time series data refers to a sequence of data points that are indexed or graphed in chronological order. 
This type of data typically reflects the developmental patterns and changing characteristics of things 
over time. Temporal data is recorded in human life everywhere, like stock prices in the financial 
sector, temperature in specific regions during a certain period, electrocardiogram trends, real-time 
monitoring data collected by sensors in the industrial sector, etc., (Abdelrahman & Keikhosrokiani, 
2020; Chatterjee & Ahmed, 2022). The core of temporal data analysis focuses on discovering the 
patterns from data and predicting future value with historical observations, providing the reference 
and basis for decision-making. Therefore, more and more researchers are starting to study how to 
design a model to analyze the temporal data (Chen et al., 2021a).

The temporal data in industrial production is becoming increasingly widespread and IIoT 
can be seen as a collaborative work that provides a collection of technologies for businesses and 
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applications using the Internet as a carrier (Ennaji et al., 2023; Fang et al., 2021; Garg et al., 2022). It 
can utilize electronic devices connected to the physical object, and heterogeneous sensors can collect 
process control data. These devices include industrial automation systems, medical instruments, 
and personal computers (Lai et al., 2021; Li & Jung, 2022; Lu et al., 2021). The data between these 
sensors is highly correlated, and this correlation has complex topological structures and nonlinear 
characteristics. However, there may be anomalies in the data in IIoT, which could have adverse effects. 
Thus, it is necessary to design a model to effectively detect anomalies in IIoT temporal data (Song 
et al., 2023). As deep learning is increasingly used in various fields, Wu et al. (2024) introduced a 
website link security detection algorithm that leverages multi-modal fusion to enhance prediction 
accuracy. Meanwhile, Guendouz et al. (2023) devised a novel feature selection approach based on 
the Dragonfly algorithm, aiming to enhance Android malware detection performance. The method 
combines different characteristics of the data to build a classification model of the results with 
machine learning algorithms.

Transformer is a powerful model structure that effectively captures the features of input data 
through self-attention and multi-head attention mechanisms (Balaji & Sankaranarayanan, 2022). 
At the same time, Transformer also has parallel computing capabilities and can handle large-scale 
datasets. Therefore, applying Transformer to anomaly detection in IIoT temporal data can improve 
detection efficiency and accuracy (Su et al., 2019).

However, simple Transformer models are often susceptible to overfitting and adversarial attacks. 
To address these issues, consider incorporating adversarial training into Deep Learning (DL) (Wang 
et al., 2019). Adversarial training adds some noise or interference during the training process, making 
it more suitable for noise and anomalies in input data. Meanwhile, adversarial training can also 
improve the model’s generalization ability, making it perform better on unprecedented data (Xia et 
al., 2022; Zhong et al., 2022).

An IIoT temporal data anomaly detection method was proposed, which integrated Transformer 
and adversarial training to solve the problem of traditional anomaly detection methods unable to 
handle complex industrial temporal data with high data dimensions, high noise interference, and fast 
pattern changes. The contribution of the proposed method is as follows:

Combining GAT and BiGRU to construct a bidirectional spatiotemporal feature extraction module 
that balances spatial and temporal features.

Combining multi-scale convolution and LSTM networks to capture multi-scale contextual 
information, implementing deep feature extraction based on residual networks, while preventing 
phenomena such as vanishing gradients, exploding gradients, overfitting, and network degradation.

Adopting an improved Transformer to achieve multi-dimensional feature fusion, combining 
pooling to balance global and local features to avoid issues such as information loss.

Combining adversarial training with a variational autoencoder to amplify abnormal reconstruction 
errors effectively solves the problem of low model performance caused by training data noise in 
traditional autoencoder models.

RelATeD woRK

Abnormal data in IIoT may lead to damage or malfunction of industrial equipment, affecting the 
quality and efficiency of industrial production, and reducing the safety and reliability of IIoT systems. 
Therefore, the detection and management of abnormal data is a very important aspect of IIoT. By 
using effective anomaly detection methods, abnormal data can be detected and processed in a timely 
manner; thereby, ensuring the normal operation of the IIoT system.

Prediction Based Methods
When detecting temporal anomaly data, using the Recurrent Neural Network (RNN) and the variants 
network was a common approach. For the simplification and lightweight consideration of the model 
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structure, Tran et al. (2022) introduced an anomaly detection model based on self-supervised learning 
(SSL) to analyze the temporal data. This model has a certain effect on detecting the degree of data 
anomalies. In addition, a convolutional encoder was applied to capture the correlation of input 
data. Shen et al. (2020) implemented the detection of abnormal data based on LSTM and GRU. 
By introducing multiple gating units, long-term dependency relationships have been learned to 
better achieve long-sequence data processing and anomaly detection. Zhang et al. (2022) proposed 
an architecture with time-frequency analysis for anomaly detection (TFAD). This model contains 
modules for data decomposition and expansion, which can improve accuracy to a certain extent. 
Meng et al. (2020) applied Transformer to data streams by masking temporal data modeling and 
proposed a masking strategy for anomaly detection using an attention mechanism that includes 
parallel update time steps. Deng & Hooi (2021) proposed a model based on graph neural networks, 
which can represent temporal data as graph data and then perform anomaly detection by learning 
feature vectors of nodes and edges. Zhou et al. (2021) introduced a model based on Transformer: 
Informer. The computational complexity has been improved because of the attention network, and 
the prediction progress and long sequence prediction efficiency have been improved.

The above prediction-based data anomaly detection methods can predict future data points by 
establishing mathematical models or algorithms and comparing actual data with predicted data to 
detect outliers. These methods have a certain degree of predictability, adaptability, and interpretability. 
But at the same time, there are also obvious drawbacks, such as high requirements for data volume 
and high computational costs. In addition, if the data distribution changes, the model may need to be 
adjusted or retrained. Therefore, it is necessary to consider issues such as data quality, computational 
cost, and model drift during use. When selecting and using this anomaly detection method, it is 
necessary to weigh the specific application scenarios and requirements.

Refactoring Based Methods
The reconstruction-based method can define clear topological structures and learn causal 
relationships between variables. Li et al. (2022) proposed a model called Anomaly PTG, 
which can achieve good detection performance in different scenarios. This model can detect 
relatively rare abnormal data. Zhao et al. (2020) used attention to graph neural networks 
(GNNs) to improve the performance of identifying root causes. Chen et al. (2021b) used 
automatic learning of graph structures, graph convolution, and the Transformer to capture 
temporal correlations. Audibert et al. (2020) introduced an unsupervised anomaly detection 
model with a reverse training autoencoder (USAD). By conducting adversarial training on the 
encoder-decoder architecture, it was possible to learn how to adapt to reconstruction errors 
containing abnormal inputs. Wu et al. (2020) proposed an improved Transformer consisting 
of an encoder and a decoder, which obtained global information from the input through the 
self-attention mechanism. However, due to its quadratic complexity with the input data, the 
efficiency was low. Zangrando et al. (2023) designed an out-of-distribution neural networks 
model for anomaly detection (ODIN AD), which can detect temporal data anomalies at multiple 
stages, such as data preparation and evaluation. Li et al. (2019) proposed an improved GAN-
based anomaly detection model (MAD-GAN). Under the GAN framework, LSTM was used as 
the basic model, and then a new discriminant and reconstruction anomaly score was introduced 
to detect anomalies using discriminators and generators.

The current temporal data anomaly detection methods in IIoT have the characteristic of high 
automation, which can automatically learn data features and perform anomaly detection, reducing 
the need for manual intervention. However, there are also problems such as high false alarm rates, 
difficulty in real-time detection, lack of interpretability, and inability to process large-scale and 
low-quality data. It is necessary to study anomaly detection methods with high accuracy, real-time 
performance, interpretability, and scalability to adapt to the challenges of the IIoT environment.
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PRoBleM DefInITIon

The IIoT data is generally collected and generated by multiple IIoT sensors. In this paper, the multi-
sensor data inputs sampled at equal time intervals are represented as follows:

X x x x
T

= { }1 2
, ,...,  (1)

In eq (1), X RT m∈ ×  is the input of the MSTSAD model, T is the maximum length of timestamp, 
m is the dimension of features of the data, and x R

t
mÎ  is the value at the time of t. For the input 

data X, the anomaly label sequence Y y y y
T

= { }1 2
, ,...,  needs to be provided. If y

t
∈ { }0 1,  is 0, it 

demonstrates that the situation at time t is normal, and if y
t
∈ { }0 1,  is 1, it demonstrates that the 

situation at time t is abnormal.
To eliminate the adverse effects caused by significant numerical differences between feature 

dimensions in temporal data, the normalization of the minimum maximum method is adopted to 
normalize each dimension of input data. The calculation method is as follows:

x
x x

x x
i

i tr i

tr i tr i

=
− ( )
( )− ( )

min

max min

,

, ,

 (2)

In eq (2), max
,
x
tr i( )  and min

,
x
tr i( )  are the max and min values on the i-th dimension of the 

input data, respectively. Due to the time correlation of temporal data, which means there is a time 
dependence between different time points, considering the dependency relationship between 
observation points and historical points. This article generates the input of the MSTSAD model 
through the sliding window, and it can be represented as:

W x x x x
t t n t n t t
= { }− + − −1 1

, ,..., ,  (3)

X is not directly used as the input result, but rather the multi-dimensional temporal data X 
is divided into a sliding window W as the input of the MSTSAD model. This makes the model’s 
anomaly detection of time observation points not only focus on itself but also combine historical time 
dependence information to score the anomalies at time points.

PRoPoSeD AnoMAly DeTeCTIon MeThoD

Fig.1 shows the framework of the proposed MSTSAD model (Multiscale time series prediction for 
anomaly detection). In Fig. 1, is the input of the MSTSAD model. First, each feature of the original 
data is normalized, and then all the features of the normalized data are concatenated into a tensor. 
The tensor is fed into the multi-scale feature extraction and bidirectional spatiotemporal feature 
extraction module. In the multi-scale feature extraction module, a multi-scale memory residual 
network is adopted to extract the temporal features of the tensor. In the bidirectional spatiotemporal 
feature extraction module, the GAT and the GRU network are adopted to extract the spatial features 
of the tensor. Then the multi-dimensional traffic feature fusion module concatenates the output of 
the multi-scale feature extraction and bidirectional spatiotemporal feature extraction module to a new 
tensor that can represent the spatial feature and temporal feature.



International Journal of Information Security and Privacy
Volume 18 • Issue 1

5

The new tensor is fed into the improved transformer layer. In the improved transformer layer, a 
multi-head attention mechanism is used to further extract the key features of the tensor. And then the 
output result is fed into the dual decoder module. In the dual decoder module, GRU is used to stack 
two fully connected layers decoder 1 and decoder 2. Finally, the abnormal score of the current time 
node is obtained by calculating the difference between the reconstruction value and the true value of 
the current. We will describe each module below in detail.

In Fig. 1, the abnormal score is as follows:

Figure 1. The Framework of The MSTSAD Model (This framework includes feature extraction, improved Transformer and bidirectional 
decoding modules, and finally calculates the anomaly score)
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Bidirectional Spatiotemporal feature extraction Module
Space feature extraction based on GAT: Due to the difficulty in obtaining the correlation between 
IIoT temporal data through prior methods, this paper considers the multivariate temporal data after 
sliding window partitioning. Each node represents a certain feature. The attention GNN is used to 
capture the relationship between adjacent nodes. Each node is a sequence: s s t o n

i i t
= ∈  ){ },

, , with 
a total of K nodes. And n represents the total number of timestamps, i.e. sliding window size, and 
also is the total number of multivariate temporal data features. The GAT layer calculates the feature 
representation of each node as:

s s
i ij j

j

L
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=
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1

 (5)

Among them, s
i
'  is the output of i; s  is the sigmoid; a

ij
 is the weight, which measures the 

direct relations between the node i and j; L is adjacent node’s amount of i. Attention score is 
expressed as:
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In eq (6) and (7), w R nÎ 2  is a learnable column vector, N represents the dimension of the data, 
which is the total number of timestamps; LR is the nonlinear activation function LeakyReLU.

Fig. 2 shows the BiGRU processing process for the input data. And this process can be described 
as follows:

� �
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In eq (8), the GRU is the nonlinear transformation of the input. W T  and W V  are the weight 
coefficients of 



h
t
 and 



h
t
.
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Multi Scale feature extraction
Fig. 3 shows details of the multi-scale memory residual. It is the core module in the temporal feature 
extraction of the input data. First, the input data is fed into three convolution layers with different 
convolution kernels, and then the results of each convolution module are fused with corresponding 
weights. The BN (Batch Normalization) layer is mainly used to reduce the time of training the 
model, and is the activation function. The convolution operation performs a sliding window on the 
input and calculates the weighted sum of the data within the window to obtain time-related local 
area characteristics of the data. LSTM network is used to capture the connection between the current 
moment of data and other moments. This allows the model to selectively ignore important information, 
which is useful for predicting and analyzing the future of temporal data.

Fig. 4 shows the structure after adding identity mapping to the multi-scale memory residual 
module. Adding identity mapping to each multi-scale memory residual module on the basis of the 
multi-scale memory module can prevent the occurrence of deep network gradient disappearance and 
achieve deep representation of the model.

Multidimensional feature fusion
The proposed model adopts an improved Transformer to fuse multidimensional features, allowing 
for mutual transmission and establishment of correlation relationships among multiple dimensional 
features, in order to adaptively strengthen key features and enhance the model’s global representation 
ability for network traffic. The structure of the improved Transformer is shown in Fig. 5.

Firstly, the low-level sentence embedding representation P pooler out= _  is obtained. Then, 
bidirectional spatiotemporal features and multi-scale features are extracted for word embedding. The 

Figure 2. The Processing of BiGRU (the BiGRU can simultaneously better capture the semantics and information in the text to 
improve the expression ability and performance of the model)
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Figure 3. Multi-scale Memory Module (Residual connections add the output of the previous layer directly to the output of the current 
layer. This residual can be further learned by subsequent layers, allowing the network to better adapt to complex data distributions.)

Figure 4. Multi-scale Memory Residual Module with Added Identity Mapping (It can prevent the occurrence of deep network 
gradient disappearance and achieve deep representation of the model)
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bidirectional spatiotemporal feature Table obtained is H
n

, and the multi-scale features are represented 
as M

s
. The obtained features from various dimensions are concatenated together to obtain the 

concatenated feature Z :

Z P M H
s n

= 

, ,
T

 (9)

Next, an improved Transformer is used to adaptively fuse multi-dimensional features P , M
s

, 
and H

n
. The improved Transformer layer uses a multi-head attention mechanism to further extract 

the key features of the tensor. Next, we pass the output to the dual decoder module. Taking the 
operation process of the i-th head of the input P  of the first channel as an example, the process of 
multi-head self-attention can be illustrated as: Initialize the relevant parameter matrix, perform self-
attention operations on the row vectors P , M

s
, and H

n
 of the fusion matrix Z, establish relevant 

connections, and obtain the output of the i-th head. Splice k heads to obtain the output o
1

 of P . The 
details are as follows.
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i i
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i i
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=
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 (10)

Figure 5. The Structure of an Improved Transformer (In the improved Transformer, multi-head attention mechanism is used to 
further extract the key features of the input data)
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In eq (10)-(12), W
i
q , W

i
k , and W

i
v  are the linear mapping weight matrices of P , and o

1
 is the 

final obtained feature.
The fusion outputs o

2
 and o

3
 of M

s
 and H

n
 are obtained after the multi head self-attention 

fusion module, and the overall fusion output is O o o o= 

1 2 3

, , . Pooling operations have the advantages 
of suppressing noise. The results of pooling are combined as the final output, and the calculation 
process is:

X maxpooling X

X averagepooling X

X

i
L A

i
L A

i
L A

i
L A

i

avg

max

→ →

→ →

= ( )
= ( )

LL A
i
L A

i
L AConcat X X
avg

→ → →= ( )









 max
,

 (13)

Dual Decoder Module
In the reconstruction stage, the decoder obtains the reconstruction value of the current timestamp by 
reconstructing latent variables, and performs anomaly diagnosis by calculating the difference between 
the reconstruction and true of the current.

Dec z Lin Lin TranEnc z

x Dec z
recon t

( ) = ( )( )





= ( )








2 1  (14)

In eq (14), Lin  is the fully connected layer. The dual decoder module in the overall framework 
mainly includes autoencoder AE1 and AE2. AE1 consists of Encoder and Decoder1, while AE2 
consists of Encoder and Decoder2. Decoder1 and Decoder2 have the same network structure, and 
AE1 and AE2 share the Encoder. The encoding-decoding form is as follows.

AE x Decoder Encoder x

AE x Decoder Encoder x
t t

t t

1

2

1

2

( ) = ( )( )
( ) = ( )( )








 (15)

Here we use GRU (Gated Recurrent Unit) to stack these two fully connected layer decoders. 
Specific steps are as follows:

Decoder AE1: Decoder AE1 is responsible for processing the output from the improved Transformer 
layer. It maps these features to higher dimensional representations and generates intermediate 
states. The intermediate state is passed to decoder AE2.



International Journal of Information Security and Privacy
Volume 18 • Issue 1

11

Decoder AE2: Decoder AE2 further processes the intermediate states of Decoder AE1. It can be 
understood as a further decoding of a specific task.

Finally, decoder AE2 calculates the predicted value of the current time node and compares it 
with the true value. And then we can get the anomaly score of the current time node by calculating 
the difference between them.

Abnormal Score
In anomaly detection, we usually use temporal data to identify anomalies. The approach is to train a 
model to reconstruct predicted values, and then determine whether a point in the test temporal data 
is an anomaly by calculating the reconstruction error. Specific steps are as follows:

(1)  Model training: We use historical temporal data to train a model to learn the characteristics and 
patterns of temporal data.

(2)  Reconstruct predicted values: Using the trained model, we predict the test data and obtain the 
reconstructed temporal data.

(3)  Calculate reconstruction error: Compare the reconstructed sequence to the original test data and 
calculate the error at each time point. Large errors may indicate anomalies.

(4)  Setting thresholds: We use a non-parametric dynamic thresholding method to determine the 
threshold for anomalies. This means that the threshold adjusts adaptively based on changes in 
the data.

(5)  Anomaly score: For each timestamp of the test data, we obtain its anomaly score, which is the 
reconstruction error. If the score exceeds the threshold, it is considered that there is an anomaly 
at that time point.

In summary, the MSTSAD model is trained to reconstruct the predicted value, and then the 
possibility of a point in the test temporal data being an anomaly is obtained by calculating 
reconstruction error. For timestamp of test data x

t
, obtain the anomaly score a

t
 for that timestamp 

as an exception. This article adopts a nonparametric dynamic threshold method to determine the 
threshold h . When a

t
> h , the corresponding anomaly label y

t
= 1 , otherwise y

t
= 0 .

Model Training
Adopting a two-stage training approach, AE1 and AE2 undergo self-training in the first stage to learn 
the periodic pattern of the input data. AE1 and AE2 are trained in adversarial training by re-inputting 
the reconstructed output of AE1 into AE2 for adversarial training. AE1 aims to deceive AE2 by 
reconstructing the data, while AE2 aims to correctly distinguish whether the data is reconstructed.

Autoencoder training: Autoencoder training takes place for Encoder, Decoder1, and Decoder2. In 
order to enable them to reconstruct normal data, the normal data is input into Decoder1 and Decoder2 
simultaneously, and the result is reconstructed through their respective decoder networks. After the 
iterative training is completed, Encoders, Decoder1, and Decoder2 that can reconstruct normal data 
are obtained. Therefore, the main purpose of this stage is to enable AE1 and AE2 to learn the feature 
of normal data, minimizing the reconstruction loss on normal data, where lossAE1 and lossAE2 
represent the reconstruction loss of AE1 and AE2 in self-training:

LOSS x AE x

LOSS x AE x

AE n i n i
i

k

AE n i n i

1

2

1

2

1

2

= − ( )





= − ( )


=
∑ , ,
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 =
∑

2

1i

k
 (16)
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Among them, x
n i,

 is the value of the i-th feature in n timestamp x
n

. AE x
n i1 ,( )  and AE x

n i2 ,( )  

represent the values of input data x
n i,

 after reconstruction by AE1 and AE2, respectively.
Adversarial training: The goal of training is for AE2 and AE1 to generate the predicted value. The 

reconstructed data generated from AE1 is compressed by Encoder to z, and then reconstructed by AE2 
using adversarial training mechanisms. The goal of AE1 is to reduce the error between the result of AE1 
and AE2, which indicates that the results of AE1 deceive AE2, causing AE2 to treat the reconstructed 
data of AE1 as real data, resulting in smaller reconstruction errors. The goal of AE2 is to maximize 
this difference, indicating that AE2 can correctly distinguish between real data and reconstructed data, 
resulting in significant reconstruction errors. The objectives of adversarial training are:

LOSS x AE AE x
A AE AE n i n i

i

k

= − ( )









=

∑min max
, ,

1 2
2 1

2

1

 (17)

Based on the above analysis, both AE1 and AE2 aim to reduce the error between x
n i,

 and the 

reconstruction values AE x
n i1 ,( )  and AE x

n i2 ,( )  to fully learn the potential features. In the adversarial 

training phase, the goal of AE1 is to reduce the final error LOSS
AE2

 between x
n i,

 and the secondary 

reconstruction data AE AE x
n i2 1 ,( )




 after passing through the AE1 and AE2 modules. On the contrary, the 

goal of AE2 is to amplify this error as much as possible to achieve recognition purposes. For the training of 
the first and second stages, this article sets the weight ratio of the reconstruction error in the two stages, which 
will change with the increase of training iterations. The proportion of training losses LOSS

AE1
 and LOSS

AE2
 

in the early stage is relatively large, but as the iterations increases, it will increase the proportion of adversarial 
training losses. The total training loss after combining the two stages is as follows for AE1 and AE2:
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 (18)

To alleviate the overfitting of the model to noise, this article introduces the VAE model. The 
encoder network adaptively generates the mean variance of the fitted data distribution, and then 
samples Gaussian noise to generate latent variables. This achieves robustness in reconstructing 
industrial temporal data and alleviates the overfitting to noise in the training data. Adding the VAE 
regularization term to the loss function during training is:

LOSS x D q z x p z
KL KL
δ γ γ δ, ,( ) = − ( ) ( )




 (19)

In eq(19), d  and g  are parameters of the prior and posterior distribution p and q, respectively, 
while x  and z  are input and latent feature representations of the variational autoencoder.
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The process is as follows:

Input: Training data sliding window W x x x x
t t n t n t t
= { }− + − −1 1

, ,..., ,

Test data sliding window ˆ ˆ , ˆ ,..., ˆ , ˆW x x x x
t t n t n t t
= { }− + − −1 1

Abnormal score weight a , number of iterations N
Encoder: input 

W
t
,x MSTCN Wms

t
= ( ),x BiGRU GAT Wts
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Decoder2: 

Input z,x Linear Linear TranEnc z
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Output: Abnormal score of test data 
1. Initialize network parameters in Encoder, Decoder1, and 
Decoder2 
2. for n=1 to N do 
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1
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Anomaly Detection
After completing the construction and training, the network weights of AE1 and AE2 converged, and 
the test data containing anomalies was the input for detection. The final result is calculated by the 
predicted values and true labels. This article calculates the anomaly score of the sliding window is:

a x x AE x

x

n n i n i
i

k

n i
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ˆ

, ,
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2 1
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ˆ
,

 (20)

In eq (20), a  is used to measure the proportion of reconstruction errors between AE1 and AE2; 
x̂
n

 represents the n-th sample in the test set. Meanwhile, this article adopts a nonparametric dynamic 
threshold method to determine the threshold h . When a x

n̂( ) > h , the corresponding anomaly label 
y
n
= 1 , otherwise y

n
= 0 .

exPeRIMenT

experimental environment
The information regarding the experimental environment during the model training process is shown 
in Table 1.

Data Set
This experiment was conducted on four real public datasets, and Table 2 shows the details of the 
datasets:

The ECG5000 dataset (Chen et al., 2015) was obtained from a patient in the MIT-BIH arrhythmia 
database and recorded their heartbeat. Each heartbeat is independently annotated by two cardiologists. 
The patient has severe congestive heart failure, and the grading value is automatically annotated, so 
it can be used as a benchmark for evaluating the proposed method. The duration of the ECG5000 
dataset is 20 hours. Its data preprocessing is divided into two steps:

Table 1. Experimental Environment (This is the environment in which we conduct experiments)

Parameters Configuration

CPU Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz 2.80 GHz

GPU NVIDIA GeForce GTX 3060

Memory 16G

OS Windows 10

Programming Language Python 3.8

Data process Pandas 1.1.2

Machin learning sklearn 0.23.2

DL TensorFlow-GPU 2.5.0 keras
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(1)  Extract each heartbeat.
(2)  Interpolate to make each heartbeat length equal.

ECG5000 dataset has 4500 training samples, and 500 testing samples. The dataset interpolates 
each heartbeat to the same length, which equals to 140 time steps, and each time step is 1 millisecond. 
According to the type of heartbeat, it is divided into 5 categories.

The GPW dataset (Lu et al., 2021) was created by Wei Gao and Tommy Morris as a network 
attack database from natural gas pipelines and water storage tanks. The dataset has higher dimensions 
and more attack types. Due to its collection and recording in real industrial control environments, the 
use of this dataset can better reflect the intrusion situation in actual industrial control systems, and so 
it is favored by researchers and industry insiders. The dataset consists of seven attack types in total.

The Occupancy dataset (Luis et al., 2016) uses statistical learning models to accurately detect 
office room occupancy, and it uses digital cameras to establish ground occupancy rates for model 
training. Occupancy contains 20560 instances and is commonly used in IIoT anomaly detection.

The SWaT dataset (Mathur, & Tippenhauer, 2016) was collected from a scaled-down water 
treatment test bench with 51 sensors. The SWaT dataset includes the data of 11 days. The data of 7 
days was collected with the normal situation and 4 days under the situation of being attacked.

Setup
For the training and detection, a 1:1 ratio was used to divide the dataset into training and testing. 
Sliding window length selected for the experiment is k = 25 ; the sliding step size is 1. The iterations 
are N = 100 , and the batch size is batch = 128 , a = 0 9. . The latent variables and hidden state 
units of the model are adjusted through backpropagation algorithms and Adam optimizers (Chatterjee 
& Ahmed, 2022; Chen, et al., 2015; Deng & Hooi, 2021; Fang et al., 2021; Lai et al., 2021). Adam 
optimizer sets the learning rate as 0.001.

The hyperparameters of the comparative model follow the author’s original settings. The 
experimental process includes comparative experiments, parameter sensitivity analysis experiments, 
ablation experiments, and case analysis, which will be described in the subsequent sections.

evaluating Indicator
The performance evaluation of the MSTSAD model adopts Precision (P), Recall (R), and F1 score 
as indicators to measure the detection effect.

P
T

T F
P

P P

=
+

 (21)

Table 2. The Information of Dataset

Dataset Train Size Test Size Dimensions Anomalies

ECG5000 4500 500 1 4.68%

GPW 135183 427617 8 13.30%

Occupancy 8143 9752 7 10.52%

SWaT 568031 378688 51 11.98%
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 (22)
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P R
1

2
=

+
 (23)

The meanings of the symbols above are shown in Table 3.

Comparison with the State-of-the-Art Methods
To measure the overall performance of the MSTSAD model, advanced methods in IIoT temporal 
data anomaly detection were selected as baseline comparison methods: Informer (Zhou et al., 2021), 
DAGMM (Deep Autoencoding Gaussian Mixture Model, Bo et al., 2018), ODIN AD (Out-of-
Distribution Neural networks for Anomaly Detection, Zangrando et al., 2023), USAD (Unsupervised 
Anomaly Detection for Multivariate Temporal data, Audibert et al., 2020), Anomaly-PTG (Anomaly 
Parallel Transformer GRU, Li et al., 2022), TFAD (Temporal data Architecture With Time-frequency 
Analysis for Anomaly Detection, Zhang et al., 2022), MAD-GAN (Multivariate Anomaly Detection 
for Temporal data Data with Generative Adversarial Networks, Li et al., 2019).

Compare and analyze the above methods using the ECG 5000, GPW, Occupancy, and SWaT 
datasets. Under the same experimental conditions, the results calculated using different models on the 
ECG 5000 dataset are listed in Fig. 6 and Table 4. It demonstrates the MSTSAD model achieves the 
highest F1 score with 99.91% among all the models on the ECG 5000 dataset. Compared to Informer, 
the F1 score increases by about 1.10%. The results on the GPW dataset are listed in Fig. 7 and Table 
5. It demonstrates that the F1 score of the MSTSAD model achieves the best result with 80.03% and 
increases by 1.37% compared to Informer. The results of the Occupancy dataset are listed in Fig. 8 
and Table 6. It demonstrates that The F1 score of the MSTSAD model increases by 2.43% compared 
to Informer. The results on the SWaT dataset are listed in Fig. 9 and Table 7. It demonstrates that the 
F1 score of the MSTSAD model increases by 2.53% compared to MAD-GAN model. Overall, the 
proposed MSTSAD model achieved the best results on all datasets.

Since Informer adopts an innovative self-attention mechanism and generative decoder, which 
can capture long-term dependencies between the temporal data, it can greatly improve the prediction 
performance. However, the Informer does not have a designed structure to extract the spatial features 
of the data, so there is a bottleneck in its anomaly detection accuracy. The proposed MATSAD model 
introduces a GAT and a GRU network to further extract the spatial features of the data and adopts 
an improved Transformer to achieve multi-dimensional feature fusion. To balance global and local 
features to avoid issues such as information loss, we designed a combined pooling structure. And 
the MSTSAD model also combines adversarial training with a variational autoencoder to amplify 
abnormal reconstruction errors effectively and solves the problem of low model performance caused 
by training data noise in traditional autoencoder models.

Table 3. Confusion Matrix (Table 3 shows the results of confusion Matrix of the MSTSAD model)

Prediction

1 0

Actual
1 TP FN

0 FP TN
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Ablation experiment
To assess the effectiveness of individual modules in the MSTSAD model, the ablation experiment 
was conducted to compare the impact of different modules on the overall performance of the model 
as follows.

Model 1: Only considers multi-scale temporal features and does not consider bidirectional 
spatiotemporal features.

Model 2: Only considers bidirectional spatiotemporal features and does not consider multi-scale 
temporal features.

Model 3: The spatiotemporal module only retains the spatial feature module GAT, while removing 
the temporal feature module BiGRU.

Figure 6. Results on The ECG5000 Dataset (shows the results of all the models on the ECG5000 dataset)

Table 4. Results on The ECG5000 Dataset (Table 4 shows the results of all the models on the ECG5000 dataset)

Model
Indicator

P R F1

Informer 97.74% 99.99% 98.87%

DAGMM 96.69% 99.99% 97.81%

ODIN AD 97.71% 99.99% 98.84%

USAD 97.42% 99.99% 98.69%

Anomaly-PTG 96.71% 99.99% 98.33%

TFAD 97.60% 99.99% 98.78%

MAD-GAN 97.16% 99.99% 98.55%

MSTSAD(ours) 99.81% 99.99% 99.91%
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Model 4: The spatiotemporal module only retains the temporal feature module BiGRU, while removing 
the spatial feature module GAT.

Model 5: Only adversarial training is used, and the variational autoencoder architecture is not used.
Model 6: Only performs simple concatenation of multi-dimensional features without using Transformer 

for encoding.

Fig. 10 and Table 8 show the results of ablation experiments on the GPW dataset. Fig. 11 and 
Table 9 show the results of ablation experiments on the Occupancy dataset. The results indicate that 
eliminating any module from the model leads to a reduction in the precision of P, R, and F1-score. 
Among all modules, the index values of Model 2, Model 1, and Model 3 have relatively large decreases, 
indicating that considering multi-scale temporal features has the greatest improvement on the model. 

Figure 7. Results on The GPW Dataset (shows the results of all the models on the GPW dataset)

Table 5. Results on The GPW Dataset (Table 5 shows the results of all the models on the GPW dataset)

Model
Indicator

P R F1

Informer 73.66% 85.07% 78.95%

DAGMM 72.87% 84.16% 78.11%

ODIN AD 73.64% 85.04% 78.93%

USAD 76.36% 77.47% 76.91%

Anomaly-PTG 74.62% 80.09% 77.25%

TFAD 77.19% 79.25% 78.21%

MAD-GAN 66.72% 91.60% 77.20%

MSTSAD(ours) 85.35% 75.34% 80.03%
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Secondly, considering the bidirectional spatiotemporal and temporal feature modules BiGRU, the 
improvement of the model is relatively significant. And it demonstrated that all the modules of GAT, 
variational autoencoder architecture, and Transformer encoding play a great role in improving the 
accuracy of model prediction.

hyperparameter experiment
Learning Rate Analysis
The experiment will be conducted with changing learning rates on the Occupancy dataset. The results 
are as follows when the learning rates are set to different values.

The result of changing learning rate of the MSTSAD model on Occupancy dataset is shown in 
Fig. 12. In Fig. 12, we set it as 0.1, 0.01, 0.001, 0.0001 and 0.00001, respectively. As the learning 
rate continues to decrease, the model prediction results become more accurate. When the value of 
the learning rate is 0.001, the MSTSAD model shows the best performance. And then as the learning 

Figure 8. Results on The Occupancy Dataset (shows the results of all the models on the Occupancy dataset)

Table 6. Results on The Occupancy Dataset (Table 6 shows the results of all the models on the Occupancy dataset)

Model
Indicator

P R F1

Informer 92.49% 94.14% 93.30%

DAGMM 91.50% 93.13% 92.30%

ODIN AD 92.46% 94.11% 93.27%

USAD 86.59% 97.79% 91.85%

Anomaly-PTG 89.06% 96.29% 92.54%

TFAD 93.91% 91.97% 92.93%

MAD-GAN 91.13% 95.16% 93.10%

MSTSAD(ours) 94.67% 96.49% 95.57%
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rate decreases, the model performance drops. Therefore, we set the learning rate of the MSTSAD 
model as 0.001.

Sensitivity Analysis of Sliding Windows
The experiment will be conducted for measuring the performance of the MSTSAD model with 
different sliding window lengths. The results of the MSTSAD model are as follows.

Fig. 13 shows the result of the different lengths of the sliding window on the MSTSAD model. 
In Fig. 13, the performance varies when setting the length of the sliding window as different values. 
When it is set to 25, the model exhibits the best performance.

The Impact of Different Layers in the Transformer-Encoder
Taking the Occupancy dataset as an example, experimental analysis will be conducted with some 
Transformer encoder layers. The experimental results of the MSTSAD model are as follows.

Figure 9. Results on The SWaT Dataset (shows the results of all the models on the Occupancy dataset)

Table 7. Results on The SWaT Dataset (Table 7 shows the results of all the models on the SWaT dataset)

Model
Indicator

P R F1

Informer 89.24% 71.91% 79.64%

DAGMM 88.28% 71.14% 78.79%

ODIN AD 89.21% 71.89% 79.62%

USAD 80.01% 71.73% 75.67%

Anomaly-PTG 93.01% 69.17% 78.67%

TFAD 92.08% 78.57% 75.18%

MAD-GAN 87.58% 68.79% 80.69%

MSTSAD(ours) 93.19% 74.38% 82.73%
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Fig. 14 shows the result of the different transformer encoder layers of the MSTSAD model. 
In Fig. 14, the performance of the model varies when layers in the Transformer are set to different 
values. When it is set to 4, the model exhibits the best performance.

Analysis of Residual Network Layers
Taking the Occupancy dataset as an example, experimental analysis will be conducted with some 
residual network layers. The results of the MSTSAD model are shown in Fig. 15 when the residual 
network layers are set to different values.

Fig. 15 shows the result of the different residual network layers of the MSTSAD model. In Fig. 15, 
we set the residual network layers as 1, 2, 3, 4 and 5, respectively. As the layers continue to increase, 
the model prediction results become more accurate. When the residual network layers are set to 3, the 

Figure 10. Results of Ablation Experiment on GPW Dataset (shows the results of the ablation experiment of the proposed MSTSAD 
models on the GPW dataset)

Table 8. Results of Ablation Experiment on GPW Dataset (Table 8 shows the results of the ablation experiment of the proposed 
MSTSAD models on the GPW dataset)

Model
Indicator

P R F1

Model 1 79.84% 70.48% 74.87%

Model 2 79.28% 69.98% 74.34%

Model 3 80.08% 70.68% 75.08%

Model 4 80.49% 71.05% 75.48%

Model 5 83.17% 73.42% 77.99%

Model 6 81.81% 72.21% 76.71%

MSTSAD(ours) 85.35% 75.34% 80.03%
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MSTSAD model shows the best performance. And then as the residual network layers increases, the 
model performance drops. Therefore, the residual network layers of the MSTSAD model are set to 3.

Computing Performance Analysis
We study the computational performance of the MSTSAD model and compare it with other baseline 
models in this section. We measure the running memory and the time spent on the training process 
and inference process on ECG5000 and SWaT datasets. Table 10 shows the computing performance 
result of all the models. Mem means the running memory of the model while training. Tr-time and 
Inf-time mean the training time and inference time of the MSTSAD model, respectively. Compared 
to ODIN AD model on ECG5000 dataset, the MSTSAD model increases running memory by about 
0.29 MB. The training time and inference time of the model also increases by 15 seconds and 1.22 

Figure 11. Results of Ablation Experiment on Occupancy Dataset (shows the results of the ablation experiment of the proposed 
MSTSAD models on the Occupancy dataset)

Table 9. Results of Ablation Experiment on Occupancy Dataset (Table 9 shows the results of the ablation experiment of the 
proposed MSTSAD models on the Occupancy dataset)

Model
Indicator

P R F1

Model 1 88.56% 90.27% 89.41%

Model 2 87.94% 89.63% 88.77%

Model 3 88.82% 90.53% 89.66%

Model 4 89.28% 91.00% 90.13%

Model 5 92.26% 94.03% 93.13%

Model 6 90.74% 92.49% 91.60%

MSTSAD(ours) 94.67% 96.49% 95.57%
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seconds, respectively. Compared to the best-performing baseline Informer on SWaT dataset, the 
MSTSAD model increases running memory by about 0.65 MB. The training time and inference time 
of the model also increases by 140 seconds and 1.14 seconds, respectively.

Since the MSTSAD model applies a graph attention module and the improved transformer network 
architecture to extract the spatiotemporal features of the data, it leads to the network architecture of the 
MSTSAD model being more complex than the baselines. In summary, the proposed MSTSAD model 
achieves the best prediction performance among the baseline models, but the model also increases 
the time of running memory and training and inference processes to some extent.

Figure 12. The Influence of Learning Rate on the Proposed Model (shows the results of the different learning rate of the MSTSAD 
model on the Occupancy dataset)

Figure 13. The Influence of the Sliding Window on the Proposed Model (shows the results of the different sliding window of the 
MSTSAD model on the Occupancy dataset)
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ConCluSIon

Aiming at the problems of information loss, difficulty in balancing spatial and temporal features, and 
influence of training data noise in current IIoT temporal data analysis methods, a fusion Transformer 
and adversarial training IIoT temporal data anomaly detection method is proposed. The performance 
of the MSTSAD model was validated through experiments. The results indicate that feature extraction 
by combining GAT and BiGRU can balance spatial and temporal features. Combining convolution 
and LSTM can capture multi-scale contextual information. The residual networks for deep feature 
extraction can effectively prevent phenomena such as vanishing gradients, exploding gradients, 
overfitting, and network degradation. The use of an improved Transformer can achieve effective fusion 

Figure 14. The Impact of Transformer Encoder Layers of the MSTSAD Model (shows the results of the different encoder layers of 
the MSTSAD model on the Occupancy dataset)

Figure 15. The Impact of Residual Network Layers on the MSTSAD Model (shows the results of the different residual networks 
layers of the MSTSAD model on the Occupancy dataset)
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of multidimensional features. The variational autoencoder combined with adversarial training can 
effectively solve the problem of model susceptibility to training data noise, thereby greatly improving 
the detection performance of the model. However, due to the introduction of the GAT network and 
the improved transformer network architecture, the model complexity has increased slightly so that 
the MSTSAD model will increase running memory and the time during the training process and 
inference process to some extent.

Future work will focus on researching methods that combine hyperparameter optimization 
algorithms with the proposed model, in order to fully leverage the predictive and anomaly detection 
performance of the model. And we will optimize the model to reduce some parameters so that it 
can reduce training time and the running memory to some extent. In addition, further exploration of 
better DL models and optimization algorithms to improve model performance is also the direction 
of future efforts, and we will also focus on how to apply the proposed method in security and safety 
in the IIoT field.
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Table 10. The Computing Performance Result of All the Models (Table 10 shows the results of the computing performance of 
all the model on the ECG5000 and SWaT dataset)

Dataset ECG5000 SWaT

Model Mem (MB) Tr-time (s) Inf-time(s) Mem (MB) Tr-time (s) Inf-time (s)

Informer 0.68 42 2.54 1.43 580 5.62

DAGMM 0.74 49 2.41 1.48 660 6.65

ODIN AD 0.57 40 2.23 1.55 790 6.87

USAD 0.69 41 2.87 1.68 830 7.64

Anomaly-PTG 0.85 53 2.96 1.73 880 8.56

TFAD 0.95 58 3.14 2.12 950 9.73

MAD-GAN 1.07 62 3.18 2.26 1020 11.34

MSTSAD(ours) 0.86 55 2.45 2.08 720 6.76
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